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IDENTIFICATION OF DAMPING IN MDOF
SYSTEMS USING TIME-SCALE DECOMPOSITION
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A method of damping identification in multi-degree-of-freedom systems is presented. The
method is based on the time-scale decomposition of the system impulse response. The
continuous wavelet transform is used to decompose the impulse response into the time-scale
domain. Three techinques based on the wavelet transform are used to estimate damping.
These are the wavelet transform cross-section procedure, the impulse response recovery
procedure based on wavelet domain filtering and the wavelet ridge detection procedure. The
methods are applied to simulated multi-degree-of-freedom systems.
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1. INTRODUCTION

Damping is a mechanism that dissipates vibration energy in dynamic systems. Structures
and machinery can be damped by mechanisms which have different internal and external
natures. These include for example, atomic/molecular microstructure effects, friction
between parts, impacts and air/fluid interactions. A combination of different phenomena
results in various types of damping. In general, structural damping can be classified either
as hysteretic or viscous [1]. Hysteretic damping arises from microstructural phenomena
and is characterised by material properties. Viscous damping is proportional to velocity
and affects the system response at or near resonances. In real structures many different
types of damping act simultaneously; this in practice leads to the concept of equivalent
viscous damping which models the overall damped behaviour of the system as being
viscous. Different models are used to represent damping in structures. These models do
not necessary imply the actual physical description of damping. The most basic models
are modal damping [2] and Rayleigh damping [3].

A number of damping measures and criteria are used in practice to characterize
structural damping [3, 4]. The damping ratio, or fraction of critical damping, is used in
this paper to describe viscous damping.

It appears in practice that damping parameters in multi-degree-of-freedom (MDOF)
systems are the most critical to estimate. It is well known that they are the most sensitive
to noise, measurement errors, inadequate excitation, etc. There exist different techniques
for measuring damping values and properties [4, 5]. Different methods of damping
identification have also been developed in dynamics; a review can be found in references
[4, 6]. These methods can be classified into time and frequency domain. The logarithmic
decrement is the simplest time-domain method used for single-degree-of-freedom (SDOF)
systems. More elaborate time-domain techniques are used for MDOF systems. The most
popular techniques include the Smith least squares (SLS) algorithm [7] and the least
squares complex exponential (LSCE) method [7] which basically fit the impulse response
function (IRF) of a MDOF system. A modification of the SLS method based on an initial
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estimate obtained from the logarithmic decrement can be found in reference [6]. Other time
domain techniques used for SDOF and MDOF systems include limit envelopes [8] and
Hilbert transform [9–13].

Frequency domain methods are based on the frequency response function (FRF). The
3-dB method [3] uses the amplitude of the FRF. This method can be improved when the
phase information from the Nyquist plot is used additionally [3]. The methods can be
extended to MDOF systems for lightly coupled modes with minimal crossovers. They also
give significant errors in the case of lightly damped systems. More accurate results can be
obtained when curve-fitting techniques are applied to the FRF. This can be done by using,
for example, a linear least squares technique for the SDOF system and a non-linear least
squares technique for the MDOF system. A comparison between various time and
frequency domain methods is given in reference [6]. A combined time-frequency approach
can be applied to estimate the damping of the system by using, for example, the
Wigner–Ville distribution [10, 13]. The main use of a time-frequency approach to the study
of vibration signals is made on time variations of the spectral characteristics.

A different approach evolves if vibration signals are considered as a superposition of
a number of components which are more or less localized. This can be done by using signal
decomposition based on a priori chosen functions. Thus instead of a time-frequency
representation one deals with a time-scale representation. The first work in this area goes
back to Gabor [14] and Hoelström [15] who used shifted versions of Gaussian discrete and
continuous functions in the time and frequency domains. If the time/frequency shift is
replaced by a dialtion or compression of scale, the time-scale decomposition leads directly
to the wavelet transform. The wavelet transform originated in the early 1980s in the works
of Morlet [16] who used it in seismology and then Grossman and Morlet [17] who
developed the geometrical formalism of the continuous wavelet transform. However, there
is a relationship between these developments and the previous work of Calderon [18] in
the area of mathematics, and Esteban and Galand [19] in signal processing. The method
has been evolving rapidly for the last ten years. The historical background and major
theoretical developments are reported, for example, in references [20, 21]. The wavelet
transform has found many applications in different areas. Structural identification analyses
are included in the references [22–27].

This paper presents three different damping estimation procedures for MDOF systems,
based on the wavelet transform. For the sake of completeness the continuous wavelet
transform is briefly introduced in section 2. Section 3 gives the main concept of damping
estimation in MDOF systems by using the wavelet transform. Two models of damping
together with the mode decoupling procedure are presented. A damping estimation
procedure based on the wavelet transform cross-sections is described in section 4. Section
5 gives the impulse response function recovery based on wavelets. The concept of wavelet
ridges and skeletons is presented in section 6. Finally, examples of damping identification
in linear and non-linear MDOF systems is given in section 7.

2. THEORETICAL BACKGROUND OF THE WAVELET TRANSFORM

The theoretical formalism of the time-scale analysis transform is a result of similarities
between methods developed in various fields from mathematics to signal precessing. For
the sake of completeness, this section gives a basic presentation of the wavelet transform
theory together with a summary of the most important properties used in the paper.

The Fourier transform can be considered as a decomposition of a function into a linear
combination of vectors given by Fourier coefficients. This decomposition does not give any
local information about the function due to the infinite nature of the trigonometric
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functions used in the analysis. One of the most recent, rapidly evolving methods which
provides for locality is the wavelet transform.

Suppose that all functions x(t) satisfy the condition

g
+a

−a

=x(t) =2 dtQa, (1)

which implies that x(t) decays to zero at 2a. The wavelet transform can be defined as

(Wgx)(a, b)=
1

za g
+a

−a

x(t)g*0t− b
a 1 dt, (2)

where b is a translation indicating the locality, a is a dilation or scale parameter, g(t) is
an analyzing (basic) wavelet and g*(·) is the complex conjugate of g(·). Each value of
the wavelet transform (Wgx)(a, b) is normalized by the factor 1/za. This normalization
ensures that the integral energy given by each wavelet ga,b (t) is independent of the
dilation a.

It can be seen now that the wavelet transform is an example of a linear transformation
that decomposes an arbitrary function x(t) into the elementary functions ga,b (t) which are
obtained from the analyzing wavelet g(t) by dilation and translation. The time
decomposition is given by trnaslation b. The frequency segmentation, or in other words
the scale decomposition, is obtained by dilating the chosen analyzing wavelet. Here
dilation represents the harmonic or periodic nature in terms of harmonic/periodic
decomposition. These two operations are sufficient to produce a basis which can represent
any function in the entire analysis space. For practical purposes the decay given by
equation (1) is very fast and thus introduces locality into the analysis. This is not the case
for the Fourier transform, where one infinite trigonometric function gives a global
representation.

The function g(t) qualifies for an analyzing wavelet, when it satisfies the admissibility
conditon [21]

Cg =g
+a

−a

=G( f ) =2
= f = dfQa, (3)

where G( f ) is the Fourier transform of g(t). This is necessary for obtaining the inverse
of the wavelet transform given by [21]

x(t)=
1
Cg g

+a

−a g
+a

−a

(Wgx)(a, b)
1

za
g* 0t− b

a 1 da db
a2 . (4)

The possibility of time-frequency localization arises from the g(t) being a window function,
which means that additionally [21]

g
+a

−a

=g(t) = dtQa. (5)

In practice, some regularity and smoothness of the wavelet function is also required.
There are a number of different complex and real valued functions used as analyzing

wavelets. In many cases a so called progresive wavelet function is used, being a complex
valued function that satisfies the admissibility conditon and does not have any negative
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frequencies. The progressivity condition ensures that the wavelet transform does not
produce any interference in the time domain between the past and the future. One of the
most widely used functions in wavelet analysis is the Morlet wavelet defined by [28]

g(t)= ej2pf0 =t= e− =t=2/2 (6)

The Fourier spectrum of the Morlet wavelet is a shifted Gaussian function [28]

G( f )=z2p e−2p2( f− f0)2 (7)

It can be seen that the admissibility condition given by expression (3) is not satisfied since
G(0)e 0 which gives Cg =+a. In practice the value of f0 q 5 is used [28] which meets
approximately the requirements given by condition (3). Another way to impose
admissibility is to set G(0)=0 or even G( f )=0 for fE 0. The latter causes the Morlet
wavelet to be progressive.

Figure 1 shows an example of the Morlet wavelet function in the time and frequency
domain for different values of dilation parameters. In many cases the so called shifted
Morlet wavelet can be used. Thus instead of f in equation (7), f− fh is applied, where fh

is the shift frequency of the Morlet wavelet. When the shifted Morlet wavelet is used, the
frequency position of the wavelet function is changed but its frequency bandwidth remains
unchanged which gives better time resolution of the wavelet function.

The wavelet transform has a number of useful properties which have been widely
analyzed and can be found elsewhere; e.g. in reference [21]. In what follows, a summary
of the most important properties which are used in this work, is given.

Figure 1. An example of the Morlet wavelet function in the (a,b) time and (c) frequency domains. ––, real
part; – – –, imaginary part.
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The wavelet transform is a linear representation of a signal. Thus it follows that for a given
N functions xi and N complex values ai (i=1, 2, . . . , N)

0Wg s
N

i=1

aixi1(a, b)= s
N

i=1

ai (Wgxi )(a, b). (8)

This property is convenient for the analysis of multi-component signals.
It is clear from the definition that the Fourier transform extracts periodic infinite waves

from the analyzed function. In contrast, the wavelet transform analyzes a function only
locally at windows defined by a wavelet function. Equation (2) is in general non-local. The
value of (Wgx)(a, b) at a point (a0, b0) depends on x(t) for all t. However conditions (1)
and (5) provide that the function g(t) decays to zero at −a and +a. If one assumes
a fast decay, i.e., the values of g(t) are negligible outside the interval (tmin , tmax ), the
transform becomes local. This feature has been explained in detail in reference [21].

The frequency localization is clearly seen when the wavelet transform is expressed in
terms of the Fourier transform,

(Wgx)(a, b)=za g
+a

−a

X( f )G*a,b (af ) ej2pfb df, (9)

where G*(·) is the complex conjugate of G(·). This localization depends on the dilation
parameter a. The local resolution of the wavelet transform in time and frequency is
determined by the duration and bandwidth of analyzing functions given by [21]

Dt= aDtg , Df=Dfg /a, (10)

where Dtg and Dfg are the duration and bandwidth of the basic wavelet function,
respectively. Thus, in the frequency domain, the wavelet transform has good resolution
at high dilations and hence low frequencies (see below) and in the time domain good
resolution at high frequencies, the latter being suitable for non-stationary and transient
signal detection.

The wavelet transform as a signal decomposition cannot be directly compared to any
time-frequency representation. However there is a relationship betwen dilation and
frequency. For the Morlet analyzing wavelet function, the relationship between the dilation
parameter af and the signal frequency fx at which the analyzing wavelet function is focused,
can be given as [29]

af = f0 ( fs /fw ) (1/fx ), (11)

where fs and fw are the sampling frequencies of the signal and the analyzing wavelet,
respectively.

The frequency bandwidth of the wavelet function for the given dilation a can be obtained
using a frequency representation of the Morlet wavelet and expressed as

Dfx =(1/pa)( fs /fw ). (12)

This allows one to obtain a single element of the wavelet decomposition of the function
for a given value of frequency (dilation) and frequency bandwidth.

3. DAMPING ESTIMATION IN MDOF SYSTEMS USING WAVELETS

3.1. 

The linear MDOF system is governed by the general equation

[M]X� +[C]X� +[K]X=F, (13)



. . 288

where [M], [C], [K], are mass, damping and stiffness matrices respectively, and F is the
excitation vector. The response X of the system can be obtained by using well known modal
analysis or a direct forced response method. Modal analysis involves the calculations of
eigenvalues and eigenvectors for the undamped system. The eigenvectors can then be used
to transfer equation (13) into modal space involving modal mass, damping and stiffness
matrices. The direct forced response approach uses the direct solution of equation (13)
without any eigenanalysis. Both approaches require damping to be defined in order to
obtain the damped response of the system. In practical applications different classes of
damping introduced in section 1 are difficult to use. Thus the concept of equivalent viscous
damping has been introduced. This implies that the overall behaviour of the structure is
modelled as viscous. The same amount of energy is assumed to be dissipated at resonances
and thus the concept is valid only for SDOF systems. Indeed, mathematically equation
(13) is in general a set of N coupled equations. However, the concept of equivalent damping
can be generalized for MDOF systems by using different models of damping. The
modal damping approach uses the damping ratio z for a SDOF system. This can be
generalized for an MDOF system when the damping ratio is applied to all modes in the
modal space. Alternatively the uncoupled solution of equation (13) is possible by using
the Rayleigh damping model. This model assumes [C] to be linearly proportional to [M]
and [K].

3.2.     

Modal analysis and direct forced response approaches together with damping models
described in section 3.1. can lead to uncoupling of MDOF systems.

Instead of the MDOF system given by equation (13), N uncoupled equations similar
to a SDOF system can be obtained,

miẍi (t)+ ciẋi (t)+ kixi (t)= fi (t), (14)

for i=1, 2, . . . , N. In practice these uncoupled equations can also be obtained when the
damping is assumed to be small. The impulse response of this MDOF system can be given
in general form as

h(t)= s
N

i=1

Ai e−zivni
t sin (z1− z2

i vnit+ci ), (15)

where vni is the natural frequency, N is the number of modes considered, Ai is the residue
magnitude of the ith mode and zi is the damping ratio. This response represents a linear
combination of its single modal components. Each mode is given by an exponentially
decaying harmonic function.

It has been shown in section 2 that the wavelet transform is a signal decomposition
procedure working as a filter in the time-frequency domain. Thus it offers a possible means
of uncoupling vibration modes. Since the analyzing wavelet function has compact support
in the time and frequency domains, equation (2) can be re-written for multi-component
signals, by using equation (10), as

0Wg s
N

i=1

xi1(a, b)=
1

za
s
N

i=1 g
t+ aDtg

t− aDtg

xi (t)g*0t− b
a 1 dt. (16)
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From equations (9) and (10) this can be expressed in the frequency domain as

0Wg s
N

i=1

xi1(a, b)=za s
N

i=1 g
fi +Dfg /a

fi −Dfg/a

X( f )G*a,b (af ) ej2pfb df (17)

The wavelet analyzing function for each ith mode is peaked at modal frequency fi . For
the Morlet wavelet function the relationship between frequency and dilation, and the
frequency bandwidth of the filter are given by equations (11) and (12), respectively.

The following sections give three methods of damping estimation based on the wavelet
transform uncoupling procedure.

4. DAMPING IDENTIFICATION USING WAVELET TRANSFORM CROSS-SECTIONS

For the simple case of a SDOF system

mẍ(t)+ cẋ(t)+ kx(t)= f(t), (18)

the impulse response function is given as

h(t)=A0 e−zvn t sin (z1− z2vnt+ j) (19)

where vn is the natural frequency, A0 is the residue magnitude and z is the damping ratio.
Here the oscillating term is given by a sine wave at the damped natural frequency and the
damping is represented by the exponentially decaying envelope. It is well known that the
dissipative mechanism of the system can be detected by the analysis of the decaying
envelope A(t) of the impulse response function. For the system given by equation (18) the
constitutive function A(t) is known in the explicit form

A(t)=A0 e−zvn t, (20)

where z=2czkm , m and k are mass and stiffness of the system respectively. The envelope
function A(t) can be obtained by using the approach based on the Hilbert transform [30].
After a simple calculation, it is revealed that

ln (A(t))=−zvnt+ln (A0), (21)

Figure 2. Impulse response functions. (a) Well separated modes from Example 1; (b) close modes from
Example 2.
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Figure 3. Frequency response functions: (a) Well separated modes from Example 1; (b) close modes from
Example 2.

Thus the damping ratio z of the system can be estimated from the slope of the straight
envelope line A(t) plotted in a semi-logarithmic scale. This procedure is well known in the
literature and applications can be found elsewhere [4, 10].

A similar procedure can be applied in the case of the wavelet transform. Consider again
the SDOF system given by equation (18). When the damping term (c/2m)2 is less than the
stiffness k/m the solution of the system can be given in the form of an analytic signal

x(t)=A(t) e2jvnz1− z2t =A(t) ejf(t) (22)

Assume that the envelope A(t) is slowly varying. For the Morlet wavelet function g(t)
given by equation (6), which is also an analytic complex valued function and has good
localization properties in the frequency domain, the wavelet transform of the solution (22)
can be approximated as [31]

(Wgx)(a, b)1A(b)G*((af� (b))) ejf(b) + o(=A� =, =f� =), (23)

Figure 4. Wavelet transform for the impulse response function from Example 1 representing well separated
modes. (a) Amplitude; (b) phase.
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Figure 5. Wavelet transform for the impulse response function from Example 2 representing close modes. The
Morlet (a,b) and shifted Morlet (c,d) wavelet functions were used in the analysis. Key: (a), (c) amplitude; (b),
(d) phase.

where G*(·) denotes the complex conjugate of G(·). The modulus of this function is given
by

= (Wgx)(a, b)1A(b) =G*(af� (b)) =. (24)

For a given value of dilation a0, from equations (20), (22) and (24), the following can be
obtained:

= (Wgx)(a0, b)1A0 e−zvnb=G*(2a0jvnz1− z2) =. (25)

Figure 6. Cross-sections of the wavelet transform amplitude representing the impulse response function with
close modes from Example 2. The values of dilation for the cross-sections were chosen to match the frequencies
of the analysed modes. (a) first mode (25 Hz); (b) second mode (30 Hz).
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Figure 7. Semi-logarithmic plots of the cross-sections given in Figure 6: (a) First mode (25 Hz); (b) second
mode (30 Hz).

When the logarithm is applied to equation (25), a simple calculation shows

ln (Wgx)(a0, b) = 1−zvnb+ln (A0 =G*(2ja0vnz1− z2) =). (26)

Thus the damping ratio z of the system can be estimated from the slope of the straight
line of the wavelet modulus cross-section = (Wgx)(a0, b) =, for the given value of dilation a0,
plotted in a semi-logarithmic scale. This result is similar to the envelope analysis given by
equation (21). Equation (26) is restricted to complex valued analytic signals. However, in
the case of real valued signals of the form

x(t)=A(t) cos f(t), (27)

when the progressive Morlet wavelet function g(t) is used, the corresponding wavelet
transform is given by [31]

(Wgx)(a, b)= �x(t), ga,b (t)�= 1
2�xa (t), ga,b (t)�, (28)

T 1

Damping estimation results for the procedure based on the wavelet transform cross-sections

Frequency Theoretical damping Noise level Estimated damping Error
Example (Hz) ratio (zt) SNR (dB) ratio (ze) (%)

1 20 0·03 a 0·03001 +0·01
20 0·02853 −4·90
10 0·02864 −4·53

78 0·045 a 0·04499 −0·01
20 0·04441 −1·31
10 0·04441 −1·31

2 25 0·055 a 0·05477 −0·42
20 0·05065 −7·91
10 0·04914 +10·65

30 0·02 a 0·02010 +0·50
20 0·02149 +7·45
10 0·02359 +17·95
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where �x, g� is the orthogonal projection of functions x(t) and g(t), xa (t) is the analytic
signal of x(t) is defined as

xa (t)= x(t)+ jx̂(t), (29)

and x̂(t) is the Hilbert transform of x(t) given by

x̂(t)=
1
p g

+a

−a

x(t)
1

t− t
dt. (30)

The result given by equation (26) was obtained also on the assumption that the analyzing
wavelet function has good localization properties in the frequency domain. In practice,
when the cross-section of the wavelet transform is used for the particular value of dilation
aa , the Fourier transform of the Morlet wavelet function is peaked at the value of
frequency f0; both values are related by equation (11).

To summarize, the damping estimation procedure can be established as follows: first the
cross-section of the wavelet transform of the signal response is obtained, then the result
is plotted on an amplitude-time semi-logarithmic scale, and, as a result the damping ratio
z is obtained. It has to be mentioned that the cross-section of the wavelet transform in
the scale domain can be obtained directly from equation (9) without any calculation of
the whole time-scale plane. One can see that the procedure based on the wavelet transform
is very similar to the procedure based on the classical complex envelope function. The
advantage over the classical procedure can be seen when the multi-degree-of-freedom
(MDOF) system is analyzed.

The damping estimation procedure based on the wavelet transform, presented above can
be extended now to MDOF systems on the assumption that the MDOF systems governed
by equation (13), can be uncoupled.

From equations (8) and (25) the response of the MDOF system can be obtained as

b0Wg s
N

i=1

xi1(a, b)b1 s
N

i=1

Ai e−zivni
bbG*(2jaivniz1− z2

i )b. (31)

Figure 8. Comparison between theoretical impulse response function (——) and recovered from the wavelet
transform impulse response function (– – –). The analysis was performed for the signal from Example 1
representing well separated modes: (a) First mode (20 Hz); (b) second mode (78 Hz).
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Figure 9. Semi-logarithmic plots (——) of the decaying envelopes of the recovered impulse response functions
represented in Figure 8. Linear regression (– – –) was used to obtain the damping ratio. (a) First mode (20 Hz);
(b) second mode (78 Hz).

Since the analyzing wavelet function has compact support in the time and frequency
domains, for each component xi ,

=G*(2jaivniz1− z2
i ) ==0 (32)

for i=1, 2, . . . , i−1, i+1, . . . , N. Thus the wavelet transform of each separated mode
i=1, 2, . . . , N becomes

= (Wgxi )(a, b) = 1Ai e−zivni
b=G*(2jaivniz1− z2

i ) =. (33)

Clearly, the wavelet transform offers a decoupling of MDOF systems into single modes.
The assumption of vanishing =G*(·) = in equation (32) depends on the wavelet transform
parameters. The wavelet analyzing function for each ith mode is peaked at modal
frequency fi . For the Morlet wavelet function the relationship between frequency and
dilation, and the frequency bandwidth of the filter is given by equations (11) and (12),
respectively.

T 2

Damping estimation results from Examples 1 and 2 for the impulse response recovery
procedure based on the wavelet transform

Frequency Theoretical damping Noise level Estimated damping Error
Example (Hz) ratio (zt) SNR (dB) ratio (ze) (%)

1 20 0·03 a 0·03082 +2·73
20 0·02962 −1·27
10 0·03102 −3·40

78 0·045 a 0·04445 −1·22
20 0·04450 −1·11
10 0·04439 −1·36

2 25 0·055 a 0·05345 −2·82
20 0·05140 −6·55
10 0·04647 −15·51

30 0·02 a 0·02020 +1·00
20 0·02065 +3·25
10 0·02253 +12·65
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Figure 10. Ridges of the wavelet transform given in Figure 4 representing Example 1.

Following equation (26), the damping ratios zi can now be estimated from equation (33)
as the slope of the straight line of the wavelet modulus cross-section = (Wgxi )(ai , b) =, for
the given value of dilation ai related to the natural frequency fni of the system, plotted in
a semi-logarithmic scale:

ln = (Wgxi )(ai , b) = 1−zivnib+ln (Ai =G*(2jaivniz1− z2
i ) =). (34)

It can be seen from equations (26) and (34) that the slopes of the wavelet cross-sections
do not depend on the analyzing wavelet function. Obviously in the case of the MDOF
systems, in order to decouple the system, the proper choice of the wavelet transform
parameters is required to receive a sufficiently compact support in the time and frequency
domains.

The advantage of the method over the complex envelope is now clear. The wavelet
transform works as a microscope whose optics are given by the wavelet function ga,b (t);
magnification by dilation a and position by translation b. This allows decoupling of the
MDOF system into single modal components. The contour plots of the wavelet transform
give information about time and frequency contents of the signal. The cross-sections of

Figure 11. Comparison between real parts of the wavelet transform skeletons (– – –) obtained from the ridges
given in Figure 10 and theoretical impulse response function (——) representing well separated modes from
Example 1. (a) First mode (20 Hz); (b) second mode (78 Hz).
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the wavelet transform offer the possibility of damping identification. The
mathematical basis of the method will be illustrated in section 7 by using computer
simulations.

5. IMPULSE RESPONSE RECOVERY USING WAVELET
RECONSTRUCTION FORMULA

The system can be represented by using the input/output relation

Y= [H]X, (35)

where X, Y are the input and output vectors, respectively and [H] is the impulse response
matrix. Existing impulse response extraction procedures involve time or frequency domain
calculations. The first approach can apply the observer gain matrix [32] or Kalman filtering
[32]. The later approach employs the FFT procedure. More recently an orthogonal wavelet
based approach has been proposed [27]. In what follows, an impulse response extraction
procedure based on the continuous wavelet transform is used to estimate damping of the
system.

The reconstruction formula given by equation (4) can be simplified to obtain a form
suitable for numerical calculations [33]:

x(t)=
1
Cg g

+a

0

(Wgx)(a, b)
da
a

. (36)

This represents a signal as a sum over possible frequencies. The reconstruction formula
given by equation (36) together with equation (10) can be used to recover the impulse
response function as

x(t)=
1
Cg

s
N

i=1 g
t+ aDtg

t− aDtg

(Wgxi )(a, b)
da
a

. (37)

Figure 12. Semi-logarithmic plots (——)of the decaying envelopes of the skeleton real parts given in Figure
11. Linear regression (– – –) was used to obtain the damping ratio. (a) First mode (20 Hz); (b) second mode
(78 Hz).
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T 3

Damping estimation results from Examples 1 and 2 for the procedure based on the ridges
and skeletons of the wavelet transform

Frequency Theoretical damping Noise level Estimated damping Error
Example (Hz) ratio (zt) SNR (dB) ratio (ze) (%)

1 20 0·03 a 0·03019 +0·63
20 0·02884 −3·87
10 0·02876 −4·13

78 0·045 a 0·04447 −1·18
20 0·04410 −2·00
10 0·04690 −4·22

2 25 0·055 a 0·05365 −2·45
20 0·05263 −4·31
10 0·05230 −4·91

30 0·02 a 0·02005 +0·03
20 0·02050 +2·50
10 0·02070 +3·50

This can be simplified for a single mode i as

x(t)=
1
Cgi g

t+ aDtg

t− aDtg

(Wgxi )(a, b)
da
a

, (38)

where

Cgi =g
fi +Dfg /a

fi −Dfg/a

=G( f ) =2
= f = df. (39)

The time-scale decomposition preserves the temporal nature of the vibration data during
the filtration operation due to the character of the wavelet transform and signal
reconstruction formula. The damping estimation procedure is now straightforward. The
impulse response function for a single mode can be recovered from the wavelet transform
by using equation (38). The damping ratio z can be then estimated as a slope of the
semi-logarithmic plot of the impulse response function envelope from equation (21).

6. RIDGES AND SKELETONS OF THE WAVELET TRANSFORM

The square of the modulus of the wavelet transform can be interpreted as an energy
density distribution over the (a, b) time-scale plane. The energy of a signal is mainly
concentrated on the time-scale plane around the so called ridges of the wavelet transform.

Figure 13. Impulse response functions for the signal exhibiting varying frequency contents and analyzed in
Example 3.
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The concept of a ridge can be developed from the analytic representation of a signal given
by equation (29), which can be rewritten as

a(t)= x(t)+ jx̂(t)=A(t) ejf(t), (40)

where x̂(t) is the Hilbert transform of the signal x(t) and A(t), f(t) are the envelope and
the instantaneous phase of the signal, respectively. Suppose that the signal and the wavelet
are asymptotic, which means they have slowly varying amplitudes compared with phase
variations. Let ts also denote some stationary points of [33]

f�a,b (t)=fx (t)−fg (t− b)/a. (41)

Here fx and fg denote instantaneous phases of the signal and the wavelet. Mathematically
the ridge of the function is the curve a= r(b), which consists of points (a, b), satisfying
the condition ts (a, b)= b [33]. This means in practice that the wavelet transform gives the
contributions of such stationary points to the scalar product between the signal and the
wavelet in equation (2). The important property of the ridge is that it is directly related
to the instantaneous frequency of the signal. This relationship, which follows from the
ridge definition is given by [33]

r(b)=f� g (0)/f� x (b). (42)

The values of the wavelet transform restricted to its ridge are called the skeleton of the
wavelet transform. It can be shown that the skeleton of the wavelet transform can be
expressed as [33]

(Wgx)(r(b), t)=C(t)a(t), (43)

where C(t) is the correction function completely determined by the wavelet and the ridge.
This means in practice that the signal and its Hilbert transform are given approximately
by the real and imaginary parts of the skeleton of the wavelet transform, respectively.

There exist different algorithms for ridge extraction. The most usual uses the local
maxima of the amplitude of the transform. This algorithm gives exact values only for linear
ridges. A better way of extraction can be obtained from the phase function; this algorithm
was proposed by Tchamitchian and Torresani [33]. The algorithm uses the following
properties of the ridge [33],

1V(a, b)/1a=0, and [dV(a, b)/db]ts(a,b)= b0 =f� g (0)/a (44)

on the ridge and on the intersection with the ridge, respectively. Here V(a, b) is the phase
of the wavelet transform. For more detailed analysis related to ridges and skeletons of the
wavelet transform the reader is referred to reference [33].

Figure 14. Wavelet transform for the signal from Example 3 given in Figure 13. (a) Amplitude; (b) phase.
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The ridge and skeleton of the wavelet transform can be detected separately for each
mode. Thus the skeleton of the wavelet transform gives the impulse response function and
its Hilbert transform. This can be used to obtain the envelope function of the impulse
response for each single mode and, following equation (21), to estimate the damping of
the system.

7. EXAMPLES OF DAMPING IDENTIFICATION

7.1.  

In order to show the usefulness of the damping estimation procedures, simulations were
performed. The algorithms based on the wavelet transform were coded in C and
implemented on a SUN workstation. The wavelet transform was calculated in the
frequency domain as a bank of filters based on the Morlet analysing wavelet. The details
of this implementation can be found in reference [34].

For simplicity the impulse response of the two-degree-of-freedom (2-DOF) system was
simulated. However, it is assumed that the procedures can be used for general MDOF
systems. The simulated data was corrupted by zero mean Gaussian noise. The
signal-to-noise ratio (SNR), in terms of rms values, was equal to 20 dB and 10 dB. The
results are presented below.

Example 1. The first example analyzed involved a 2-DOF system with well separated
modes. The IRF consisted of two exponentially decaying sine waves with frequencies equal
to 20 Hz and 78 Hz. The damping ratios were equal to 0·03 and 0·045 respectively.

Example 2. A 2-DOF system with close modes was analyzed as the second example. The
IRF included two exponentially decaying sine waves with frequencies equal to 25 Hz and
30 Hz. The relative frequency difference between modes compared with the sampling
frequency used, represents a typical mode interaction in an aircraft structure data [26].

The IRFs and FRFs of the simulated signals are given in Figures 2 and 3 respectively.
Figure 4 shows the wavelet transform for Example 1. The wavelet transform is given in
the form of the contour plots of its amplitude and phase. Two modes are represented by
two horizontal dark bands in the modulus and two horizontal bands with parallel vertical
stripes in the phase. Each pattern is produced by a sine wave. The decaying nature due

Figure 15. Impulse response function recovery procedure based on the wavelet transform and performed for
the impulse response function from Example 3: (a) High frequency mode; (b) semi-logarithmic plot (——) of
the recovered impulse response function decaying envelope. Linear regression (– – –) was used to obtain the
damping ratio.
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to the exponential decay of the sine wave can also be observed. The values of the phase
change from 0 to 2p. When the phase reaches 2p, it is wrapped around to the value 0.
The vertical stripes represent lines of constant phase. The wavelet transform for Example
2 is given in Figure 5. Here, two close modes which are difficult to observe in Figure 5(a,b)
can be clearly separated using a shifted ( fh =15 Hz) Morlet wavelet function in
Figure 5(c,d).

The procedure involving the wavelet transform cross-section was used to identify the
damping ratios. The cross-sections of the wavelet transform were obtained for the values
of dilation related to the analyzed modal frequencies. The semi-logarithmic plots of these
cross-sections were used to estimate damping ratios. Figure 6 shows an example of the
wavelet transform amplitude cross-sections representing the IRF with two close modes
from Example 2. Here, the wavelet transform from Figure 5(c,d) was used to obtain the
cross-sections representing close modes. The semi-logarithmic plots of these cross-sections
are given in Figure 7. Linear regression was used to obtain the damping ratio from the
semi-logarithmic plots. Estimated values of damping are given in Table 1 for different
frequency modes and levels of Gaussian white noise added to the data.

The wavelet reconstruction formula was used to recover the IRFs. The values of
damping were estimated from the IRFs by using decaying envelopes. Figure 8 shows a
comparison between theoretical (solid line) and recovered from the wavelet transform
(dashed line) IRFs representing well separated modes from Example 1. These two curves
show good agreement apart from the beginning of the data. The accuracy of the recovery
procedure can be evaluated by using the normalised Mean Square Error (MSE) defined
as [35]

MSE(x)=
100
Ns2

x
s
N

i=1

(xi − x̂i )2, (45)

where xi is the theoretical impulse response function, x̂i is the recovered impulse response
function, sx is the standard deviation of the theoretical impulse response function and N
is the number of sample points in the analyzed data. The MSE for the example presented
is equal to 23·5%. However, when the 15% of the signal beginning is not taken into
account, the MSE reaches 0·41%. Figure 9 shows the semi-logarithmic plots of the
decaying envelopes of the recovered IRFs. Linear regression was used to obtain damping
ratios from the semi-logarithmic plots. Table 2 gives estimated values of damping for
different frequency modes and levels of Gaussian white noise used to corrupt the original
data.

Figure 16. Ridges of the wavelet transform given in Figure 14 representing Example 3.
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Figure 17. Damping estimation procedure based on the ridges and skeletons of the wavelet transform and
performed for the impulse response function from Example 3: (a) Real part of the wavelet transform skeleton
obtained from the ridge representing the low frequency mode; (b) semi-logarithmic plot of the real part of the
wavelet transform skeleton obtained from the ridge representing the low frequency mode.

Finally, the ridges and skeletons of the wavelet transform were used to estimate damping
of the system. Figure 10 shows the ridge of the wavelet transform for Example 1. The ridge
consists of two parts representing two frequency modes. The wavelet transform skeletons
were obtained from this ridge separately for each mode. Figure 11 gives a comparison
between real parts of the wavelet transform skeletons (dashed lines) obtained from the
ridges given in Figure 11, and the theoretical IRFs (solid line) representing well separated
modes from Example 1. This, apart from the ends, shows perfect match of both signals.
The MSE for this example is equal to 35·7%; however, when the 15% of the signals at
both ends are rejected, the MSE reaches 0·74%. The damping ratios were estimated by
using the skeleton of the wavelet transform. Figure 12 shows the semi-logarithmic plots
of the decaying envelopes of the skeleton real parts presented in Figure 11. Linear
regression was used to obtain damping ratio from these plots. The estimated values of
damping for different frequency modes and levels of noise are given in Table 3.

Example 3. The third example analyzed involved a 2-DOF system with varying
frequency content. The simulated signal consists of two frequency modes: high frequency
sine wave (180 Hz) with exponential decay, low frequency sine wave (4 Hz) with
exponential decay and linearly varying frequency (4–8 Hz). The damping ratios of these
two modes were equal to 0·3 and 0·01 respectively.

T 4

Damping estimation results from Example 3 for the impulse response recovery procedure
based on the wavelet transform

Frequency Theoretical damping Noise level Estimated damping Error
Example (Hz) ratio (zt) SNR (dB) ratio (ze) (%)

3 varying 0·03 a 0·02995 −0·17
20 0·03054 +1·80
10 0·03543 +18·30

180 0·01 a 0·01026 +2·60
20 0·00955 −4·51
10 0·00946 −5·39
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T 5

Damping estimation results from Example 3 for the procedure based on the ridges and
skeletons of the wavelet transform

Frequency Theoretical damping Noise level Estimated damping Error
Example (Hz) ratio (zt) SNR (dB) ratio (ze) (%)

3 varying 0·03 a 0·03012 +0·40
20 0·03063 +2·10
10 0·03151 +5·03

180 0·01 a 0·00992 −0·81
20 0·00973 −2·71
10 0·00967 −3·30

Figure 13 shows the simulated IRFs from Example 3. The wavelet transform of the
signal is presented in Figure 14. The amplitude and phase of the wavelet transform exhibits
similar behaviour to that observed in Figures 4 and 5. The varying frequency contents of
the low frequency mode can be seen additionally.

The IRF recovery procedure and ridges of the wavelet transform were used to estimate
the damping ratios. Figure 15(a) shows an example of the recovered IRF for the high
frequency component. The semi-logarithmic plot of the decaying envelope of this IRF can
be seen in Figure 15(b). The ridge of the wavelet transform is given in Figure 16.
Figure 17(a) gives the real part of the skeleton of the wavelet transform representing low
frequency mode. The semi-logarithmic plot of the decaying envelope of the wavelet
transform skeleton is presented in Figure 17(b). Table 4 gives the values of the damping
ratios for different modes and levels of noise. Here the impulse response function recovery
procedure was used to estimate damping. Similar results using ridges and skeletons of the
wavelet transform are shown in Table 5.

7.2. DISCUSSION AND FINAL REMARKS

Three different techniques based on the wavelet transform were used to estimate
damping of 2-DOF systems. The cross-section procedure is easy to use. It does not require
any calculations in the whole time-scale wavelet transform domain. However the
limitations come from the fact that it can be used only for linear systems with constant
frequency. It can be seen in Table 1 that the accuracy of damping estimation is very good
for systems with well separated modes. The error remains less than 5% even for the data
corrupted by the noise. In the presence of close modes, the noise effects the results
significantly.

The impulse response function can be recovered by using the wavelet transform. The
procedure involves the process of filtering in the time-scale domain. The results presented
in Figure 8 show that the impulse response can be recovered with good accuracy apart
from the beginning of the signal. The disturbances at the beginning of the signal result
from the process of filtering and are similar to the well known Gibbs phenomenon.
Damping of the system can be estimated from the recovered impulse response function.
Estimated damping values presented in Tables 2 and 4 show that the impulse recovery
method is as effective as the cross-section procedure in the case of the well separated modes
and performs better in the case of the close mode systems. The method offers additionally
the possibility of damping estimation for systems with varying frequency contents. It failed
only in the case of noisy data (SNR=10 dB).
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The impulse response function can also be recovered by using the ridge and skeleton
of the wavelet transform. The procedure is based on the phase of the wavelet transform.
The recovery results presented in Figure 11 are in good agreement with the theoretical
impulse response functions, apart from the ends of the signal. The disturbances are due
to the ridge detection procedure which is based on the phase of the wavelet transform.
The lines of constant phase are curved in such a way that their maxima lay at their
intersections with the ridge. Thus the ridge detection procedure requires a stationary phase
approximation, which fails at the end of the signal. However, the damping estimation
results presented in Tables 3 and 5 show very good accuracy. The error is less or equal
than 5% even in the case of noisy data and two close modes or varying frequency contents.
There is still a margin for further improvement when the amplitude of the wavelet
transform is used to detect the ridge [31].

It has to be mentioned that standard methods of damping estimation based on the
complex envelope and Hilbert transform can offer similar results especially in the case of
the cross-section procedure. However the main interest of the wavelet transform-based
analysis is in the context of filtering, which in the case of classical methods is performed
in the time or frequency domain, and in the case of the wavelet transform analysis is
realized in the combined time-scale domain. This allows one to use the method for a
combination of asymptotic signals which in practice represent non-linear and time-variant
behaviour of the system.

8. CONCLUSIONS

Three methods of damping identification based on the time-scale decomposition have
been presented. The methods use the continuous wavelet transform to unfold the
multicomponent structure of the MDOF system impulse response. The wavelet transform
has been used to decouple the system into single harmonic modes. The mathematical
framework of the decoupling procedure has been provided. It has been shown that the
methods are independent of the choice of the analyzing wavelet function. The three
damping estimation procedures which have been presented are: the wavelet transform
cross-section procedure, the impulse response recovery procedure based on wavelet
domain filtering and the ridge detection procedure. The procedures have been applied to
simulated 2-DOF systems giving satisfactory results of damping estimation. Out of the
three procedures the wavelet ridge detection technique gives the best accuracy especially
in the case of noisy data.

More work involving simulated and experimental results is required to fully establish
the methods. Further work is directed to modal parameter identification in linear and
non-linear systems.
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